 
                  Whatever type of information you have collected, analysis and discussion of your findings will be time-consuming. This
                  can be daunting for those new to inquiry, but once begun can reveal fascinating discoveries.
                  
                  Data needs analysing – it does not 'speak for itself'. Different people interpret evidence differently. Your analysis
                  will support your interpretation of your data.
                  
                  Analysis is about organising the information you have collected, drawing out themes and trends, and interpreting its significance
                  within the context of the study. 
 
                  How you analyse your data will be determined by the type of information you have collected and should be part of your research
                  design. The format of the data (questionnaire replies, test scores, audio or video recordings, written accounts, etc.) will
                  determine the resources required.
                  
                  There are many long-established techniques that can be applied although sometimes you will need to invent or adapt the analysis
                  to fit your research question.
                  
                  Although free software packages designed for specific data analysis are available, high-specification applications can be
                  expensive. Most practitioner researchers rely on the traditional methods unless their project is part of a course of study
                  and they have access to college or university computer facilities.
 
                  The process of preparing data for analysis should begin as it is collected. Raw data needs to be sorted, coded and indexed
                  in a systemised way.
                  
                  In some strategies (eg grounded theory), preliminary data analysis informs continuing data collection.
                  
                  Analysis should result in a balanced interpretation of what the data reveals, including acknowledgement of any limitations
                  that will impact on your conclusions.
                  
                  
 
                  Coding is the process of packaging information. It can be built into the data collection strategy. For example, a question
                  might read: 'Is the young person aged 5-7, 8-11, 12-14, 15-16, 16+?'. The coding for these groups may then be 5-7 = 1, 8-11=
                  2, and so on. This approach is known as deductive coding and can really save analysis time. Despite this
                  advantage, it requires thorough planning to cover all possible responses.
                  
                  Inductive coding supports exploratory inquiry, since responses do not need to fit pre-determined constraints.
                  The coding is derived from categories suggested by the data. For example, answers to: 'Where do you go on holiday?' may be
                  best categorised by town, region, country, etc., depending on the range of responses given.
computer software
 
                  Computer applications save time and allow for more complex analysis. However, the availability of such hardware and software
                  should not sway your method of analysis. The primary consideration should always be to use the method that is most appropriate
                  for the research question and data type.
                  
                  Many experienced researchers, particularly in the quantitative field, argue that though undertaking the process yourself adds
                  time to the analysis phase, it can have a beneficial impact through the interpretations you form and modify as you work with
                  your data.
A small sales and marketing team from a shoe manufacturing company were sent on a tour of the Pacific region to assess
                  market potential. The marketing manager received two early reports. One read, 'The majority of the population are not wearing
                  shoes: excellent marketing opportunity!' The other read, 'Most of the people do not wear shoes: poor marketing opportunity'.
                  
                  Blaxter et al, 2001
Variation between individuals will also occur at the interpretation stage. Not all researchers will draw the same conclusion, even when working with the same data, as this fictional anecdote from Blaxter, Hughes and Tight (2001) illustrates:
 
                  This example illustrates that it is how the data is understood that influences the conclusions.
                  
                  This is a prime example of a situation where analysing observational data alongside other sources of data (triangulation)
                  may produce a more rounded interpretation.
                  
                  It also makes a case for involving other people at key points during your data analysis. 
                  
                  How will others interpret a sample of your material? It may be that they offer a different or better perspective from your
                  own. If several people interpret the information one way, this may be the more valid interpretation. This is known as interrater
                  reliability.
 
                  Blaxter, J, Hughes, C. and Tight, M. (2001) How to Research, Buckingham: Open University Press.
Cohen, L., Manion, L. and Morrison K. (2011) Research Methods in Education. 7th edition. London Routledge.